Adjusted Coefficient of Determination

Multiple R2 The multiple coefficients of determination, R2, can be used to test the overall usefulness of the overall set of independent variables in explaining the dependent variable. Multiple R2 can be interpreted as the percentage of the dependent variables’ total…

More Details
The F-statistic

The F-test determines whether all the independent variables help explain the dependent variable. It is a test of regression’s overall significance that involves testing the null hypothesis that all the slope coefficients in the regression are jointly equal to zero…

More Details
Assumptions of Multiple Regression Model

Multiple regression models are built on the following assumptions. The relationship between the dependent variable, \(Y\), and the independent variables, \(X_{1}, X_{2},…, X_{k}\) is linear. The independent variables \((X_{1}, X_{2},…, X_{k})\) are not random. There exists no definite linear relationship between…

More Details
The Predicted Value of a Dependent Variable

The Predicted Value of the Dependent Variable The following steps are followed to predict the value of a dependent variable in a multiple regression model. Determine the regression coefficient estimates. Obtain the forecasted values of the independent variables. Calculate the…

More Details
Interpreting the Results of Hypothesis Tests of Regression Coefficients

The following results are obtained from regressing the price of the US Dollar Index (USDX) on inflation rates and real interest rates. $$\small{\begin{array}{l|c}\textbf{Regression Statistics}\\ \hline\text{Multiple R} & 0.8264\\ \hline\text{R Square} & 0.6830\\ \hline\text{Adjusted R Square} & 0.5924\\ \hline\text{Standard Error} &…

More Details
Estimated Regression Coefficients

The intercept term is defined as the value of the dependent variable when the independent variables are zero. On the other hand, each slope coefficient is the estimated change in the value of the dependent variable for a one-unit change…

More Details
Multiple Regression Equation

Multiple regression allows us to evaluate the effect of two or more independent variables on a given dependent variable. Multiple regression with two explanatory variables and one intercept term can be represented in the following 3D diagram: Mathematically, a multiple…

More Details
Functional Forms for Simple Linear Regression

Most Financial and economic data exhibit non-linear relationships between the dependent and independent variables. Estimating such data using a simple linear regression model would lead to the dependent variable being understated for some ranges of the independent variable. Thus, we…

More Details
Prediction Using Simple Linear Regression

We calculate the predicted value of the dependent variable (Y) by inserting the estimated value of the independent variable (X) in the regression equation. The predicted value of the dependent variable (Y) is determined using the formula: $$\widehat{Y}=\widehat{b_{0}}+\widehat{b_{1}}X$$ Where: \(\widehat{Y}\)…

More Details
Hypothesis Testing

Hypothesis testing is used to test whether the estimated regression coefficients are statistically significant. Hypothesis testing can be performed using the confidence interval approach or the t-test approach. In the previous learning objective, we discussed the confidence interval approach. In…

More Details