The Fundamental Law of Active Portfoli ...
The Basic Law (Unconstrained Portfolio) The basic fundamental law of active portfolio management... Read More
The residual income model analyzes the intrinsic value of equity as the sum of:
Residual income is computed as net income minus an equity charge:
$$\text{RI}_{\text{t}}=\text{E}_{\text{t}}-(\text{r}\times\text{B}_{\text{t}-1})$$
Using the residual income model, the intrinsic value of common stock can be expressed as follows:
$$\text{V}_{0}=\text{B}_{0}+\sum_{\text{t}-1}^{\infty}\frac{\text{RI}_{\text{t}}}{(1+\text{r})^{\text{t}}}=\text{B}_{0}+\sum_{\text{t}-1}^{\infty}\frac{\text{E}_{\text{t}}-\text{rB}_{\text{t}-1}}{(1+\text{r})^{\text{t}}}$$
Where:
\(\text{V}_{0}=\) Value of the share today
\(\text{B}_{0}=\) Current book value of equity per share
\(\text{B}_{\text{t}}=\) Expected book value of equity at time t
\(\text{r}=\) Required rate of return on equity
\(\text{E}_{\text{t}}=\) Expected EPS for period t
\(\text{RI}_{\text{t}}=\) Expected per share residual income
A company has the following information:
The required rate of return on equity of 8%,
a) The per-share book value and residual income for the next three years are:
$$\small{\begin{array}{l|c|c|c}\textbf{Year} & \textbf{1} & \textbf{2} & \textbf{3} \\ \hline \text{Beginning book value per share}\\ (\text{B}_{\text{t}-1}) & \$9.00 & \$10.00 & \$11.00 \\ \hline \text{Net income per share (EPS)} & 3.25 & 4.00 & 5.50 \\ \hline \text{Less dividends per share (D)} & 2.25 & 3.00 & 16.50 \\ \hline
\text{Ending book value per share}\\ (\text{B}_{t-1}+\text{EPS} – \text{D})& \$10.00 & \$11.00 & \$0.00 \\ \hline \text{Net income per share (EPS)} & 3.25 & 4.00 & 5.50 \\ \hline \text{Less per share equity charge}\\ (\text{rB}_{\text{t}-1}) & 0.72 & 0.80 & 0.88 \\ \hline\textbf{Residual income} & \textbf{\$2.53} & \textbf{\$3.20} & \textbf{\$4.62} \\ \end{array}}$$
Using the residual income model, intrinsic value can be calculated as:
$$\text{V}_{0}=9.00+\frac{2.53}{(1.08)}+\frac{3.20}{(1.08)^{2}}+\frac{4.62}{(1.08)^{3}}=$17.75$$
Using the dividend discount model, intrinsic value can be calculated as:
$$\text{V}_{0}=\frac{2.25}{(1.08)^{1}}+\frac{3.00}{(1.08)^{2}}+\frac{16.50}{(1.08)^{3}}=$17.75$$
The residual income model and other valuation models like the dividend discount model should give the same value.
There is an alternative way of computing residual income besides,
$$\text{RI}_{\text{t}}=\text{E}_{\text{t}}-(\text{r}\times\text{B}_{\text{t}-1})$$
This involves applying the difference between the actual return on equity (ROE) and the required return on equity (\(r\)) to the beginning-of-period book value.
$$\text{E}_{\text{t}}=\text{ROE}\times\text{B}_{\text{t}-1}$$
Therefore,
$$\text{RI}_{\text{t}}=(\text{ROE}-\text{r})\times \text{B}_{\text{t}-1}$$
Using this formula, the residual income model equation can be expressed as:
$$\text{V}_{0}=\text{B}_{0}+\sum_{\text{t}-1}^{\infty}\frac{(\text{ROE}_{\text{t}}-\text{r})\text{B}_{\text{t}-1}}{(1+\text{r})^{\text{t}}}$$
Question
Assuming a company has the following information:
- Current book value per share equals $22.00.
- For the next three years, EPS is expected to be $6.50, $8.00, and $10.50, respectively.
- Dividends for the next three years are expected to be $3.50, $5.00, and $12.50 respectively.
- The Year 3 dividend is expected to be a liquidating dividend, i.e., the company is anticipated to cease its operations at the end of Year 3 and distribute its entire book value in a dividend.
- The required rate of return on equity of 9%.
Its intrinsic value would be closest to:
- 37.14.
- 35.50.
- 39.23.
Solution
The correct answer is A.
$$\small{\begin{array}{l|l|l|l}\textbf{Year} & \textbf{1} & \textbf{2} & \textbf{3} \\ \hline
\text{Beginning book value per share}\\ (\text{B}_{\text{t}-1})& \$22.00 & \$25.00 & 28.00 \\ \hline \text{Net income per share (EPS)} & 6.50 & 8.00 & 10.50 \\ \hline \text{Less dividends per share (D)} & 3.50 & 5.00 & 38.50 \\ \hline
\text{Ending book value per share}\\ (\text{B}_{t-1}+\text{EPS} – \text{D}) & 25.00 & 28.00 & 00.00 \\ \hline \text{Net income per share (EPS)} & 6.50 & 8.00 & 10.50 \\ \hline \text{Less per share equity charge}\\ (\text{rB}_{\text{t}-1}) & 1.98 & 2.25 & 2.52 \\ \hline \textbf{Residual income} & \textbf{\$4.52} & \textbf{\$5.75} & \textbf{\$7.98} \\ \end{array}}$$$$\text{V}_{0}=22.00+\frac{4.52}{(1.09)^{1}}+\frac{5.75}{(1.09)^{2}}+\frac{7.98}{(1.09)^{3}}=$37.14$$
Reading 26: Residual Income Valuation
LOS 26 (c) Calculate the intrinsic value of a common stock using the residual income model and compare value recognition in residual income and other present value models.