Overfitting and Methods of Addressing it
Overfitting is a problem that arises when the machine learning algorithm fits the... Read More
$$\text{Justified leading}\ \frac{\text{P}_{0}}{\text{E}_1} =\frac{\text{D}_{1}⁄\text{E}_1}{\text{r}-\text{g}}=\frac{1-\text{b}}{\text{r}-\text{g}}$$
Where:
\(1-\text{b}=\) Payout Ratio
$$\begin{align*}\text{Justified leading}\ \frac{\text{P}_{0}}{\text{E}_0} &=\frac{\frac{\text{D}_{0}(1+\text{g})}{\text{E}_0}}{\text{r}-\text{g}}=\frac{(1-\text{b})(1+\text{g})}{\text{r}-\text{g}}=\bigg(\frac{1-\text{b}}{\text{r}-\text{g}}\bigg)(1+\text{g})\\ \text{Justified trailing}&=\text{Justified leading}\ \frac{\text{P}}{\text{E}}\times(1+\text{g})\end{align*}$$
Given the following forecasted fundamentals:
Calculate the justified trailing and justified leading multiples based on the above-forecasted fundamentals.
$$\begin{align*}\text{Justified trailing P/E} &= \frac{(1-\text{b})(1+\text{g})}{\text{r}-\text{g}}\\ &=\frac{(1-40\%)(1.03)}{0.10-0.03}\\&=8.83\\ \\ \text{Justified leading P/E}&=\frac{1-0.40}{0.10-0.03}\\&=8.57\end{align*}$$
$$\text{Justified}\ \frac{\text{P}_{0}}{\text{B}_{0}}=\frac{\text{ROE}-\text{g}}{\text{r}-\text{g}}$$
Where:
\(\text{ROE}=\) Return on equity.
\(\text{r}=\) Required return on equity.
\(\text{g}=\) Sustainable growth rate.
The following information relates to ABC Ltd:
The firm’s justified P/B based on the above fundamentals is closest to:
$$\begin{align*}\text{Justified}\ \frac{\text{P}_{0}}{\text{B}_{0}}&=\frac{\text{ROE}-\text{g}}{\text{r}-\text{g}}\\&=\frac{0.16-0.10}{0.12-0.10}\\&=3\end{align*}$$
All else equal, P/B is positively related to ROE.
$$\text{Justified P/S}=\frac{(\text{E}_{0}/\text{S}_{0})(1-\text{b})(1+\text{g})}{\text{r}-\text{g}}$$
Where:
\(\text{E}/\text{S}_{0}=\) Net profit margin.
\(1-\text{b}=\) Payout ratio.
P/S ratio increases with an:
Consider the following information:
$$\small{\begin{array}{l|r}\text{Dividend payout ratio} & 30\% \\ \hline\text{ROE} & 12\% \\ \hline\text{EPS} & \$6 \\ \hline\text{Sales per share} & \$328 \\ \hline{\text{Expected growth rate in}\\ \text{dividend and earnings}} & 7.50\% \\ \hline\text{Required rate of return} & 15\%\\ \end{array}}$$
Calculate justified P/S based on these fundamentals.
$$\begin{align*}\text{Justified P/S}&=\frac{(\text{E}_{0}/\text{S}_{0})(1-\text{b})(1+\text{g})}{\text{r}-\text{g}}\\&=\frac{(\frac{6}{328})(0.30)(1.075)}{0.15-0.075}=0.0786\end{align*}$$
A low justified P/S ratio may indicate the stock is undervalued, while a significantly above-average ratio may suggest overvaluation.
Question
Consider the following information:
- Earnings growth ratio = 12%
- Required rate of return = 13%
- Long term profit margin = 6.5%
- Dividend payout ratio = 30%
The justified P/S ratio is closest to:
- 2.184.
- 2.451.
- 2.662.
Solution
The correct answer is A.
$$\begin{align*}\text{Justified P/S}&=\frac{(\text{E}_{0}/\text{S}_{0})(1-\text{b})(1+\text{g})}{\text{r}-\text{g}}\\&=\frac{(0.065)(0.30)(1.12)}{0.13-0.12}= 2.184\end{align*}$$
Reading 25: Market-Based Valuation: Price and Enterprise Value Multiples
LOS 25 (h) Calculate and interpret the justified price-to-earnings ratio (P/E), price-to-book ratio (P/B), and price-to-sales ratio (P/S) for a stock, based on forecasted fundamentals.