Assumptions Relating to the Evolution ...
Recall from the first learning objective of this reading that the forward rate... Read More
The following steps are followed to predict the value of a dependent variable in a multiple regression model.
$$\hat{Y_{i}}=\widehat{b_{0}}+\widehat{b_{1}}\hat{X_{1i}}+\widehat{b_{2}}\hat{X_{2i}}+…+\widehat{b_{k}}\hat{X_{ki}}$$
Where:
Consider the following regression equation of the price of USDX on inflation rates and real interest rates:
$$P=b_{0}+b_1INF+b_2IR+\epsilon_{t}$$
The following table gives the regression results:
$$\small{\begin{array}{l|c}\textbf{Regression Statistics}\\ \hline\text{Multiple R} & 0.8264\\ \hline\text{R Square} & 0.6830\\ \hline\text{Adjusted R Square} & 0.5924\\ \hline\text{Standard Error} & 5.3537\\ \hline\text{Observations} & 10\\ \end{array}}$$
$$\small{\begin{array}{l|c|c|c|c}{}& \textbf{Coefficients} & \textbf{Standard Error} & \textbf{t Stat} & \textbf{P-value}\\ \hline\text{Intercept} & 81 & 7.9659 & 10.1296 & 0.0000\\ \hline\text{Inflation rates} & -276 & 233.0748 & -1.1833 & 0.2753\\ \hline\text{Real interest Rates} & 902 & 279.6949 & 3.2266 & 0.0145\\ \end{array}}$$
Use the estimated regression equation above to calculate the predicted price of the US dollar index (USDX), assuming the inflation rate is 3.5% and the real rate of interest is 4%.
$$\hat{Y_{i}}=\widehat{b_{0}}+\widehat{b_{1}}\hat{X_{1i}}+\widehat{b_{2}}\hat{X_{2i}}+…+\widehat{b_{k}}\hat{X_{ki}}$$
$$\begin{align*}\hat{Y_{i}}&=81+(-276\times0.035)+(902\times0.04)\\&=$107.42\end{align*}$$
Question
Consider the following multiple regression results of the return on capital (ROC) on performance measures (profit margin (%), sales and debt ratio).
$$\small{\begin{array}{l|c}\textbf{Regression Statistics}\\ \hline\text{Multiple R} & 0.7906\\ \hline\text{R Square} & 0.6251\\ \hline\text{Adjusted R Square} & 0.5715\\ \hline\text{Standard Error} & 1.1963\\ \hline\text{Observations} & 25\\ \end{array}}$$
$$\small{\begin{array}{l|c|c|c|c|c}{}& \textbf{Coefficients} & \textbf{Standard Error} & \textbf{t Stat} & \textbf{P-value} \\ \hline\text{Intercept} & 8.6531 & 0.9174 & 9.4323 & 0.0000 \\ \hline \text{Sales} & 0.0009 & 0.0005 & 1.7644 & 0.0922\\ \hline\text{Debt ratio} & 0.0229 & 0.0165 & 1.3880 & 0.1797 \\ \hline\text{Profit Margin%} & 0.2996 & 0.0564 & 5.3146 & 0.0000\\ \end{array}}$$
Given that sales = 1000, debt ratio = 20, and profit margin = 20%, the predicted value of the return on capital (ROC) according to the regression model is closest to:
- 7.38%.
- 8.29%.
- 16.03%.
Solution
The correct answer is C.
The regression equation is expressed as:
$$\text{ROC} = 8.653+0.0009S+0.0229DR+0.2996PM$$
$$\begin{align*}\text{ROC} &= 8.6531+ (0.0009\times 1000)+(0.0229\times 20) + (0.2996\times 20)\\&=16.03\%\end{align*}$$
Reading 2: Multiple Regression
LOS 2 (e) Calculate and interpret a predicted value for the dependent variable, given an estimated regression model and assumed values for the independent variables.