Limited Time Offer: Save 10% on all 2022 Premium Study Packages with promo code: BLOG10

# Calculate variance, standard deviation for conditional and marginal probability distributions

## Variance and Standard Deviation for Marginal Probability Distributions

Generally, the variance for a joint distribution function of random variables $$X$$ and $$Y$$ is given by:

$$Var\left(X,Y\right)=E\left(g\left({x}^2,\ {y}^2\right)\right)-\left(E\left[g\left(x,y\right)\right]\right)^2$$

The standard deviation of joint random variables is the square root of the variance. Therefore, the standard deviation is given by:

$$\sigma_{X,Y}=\sqrt{E\left(g\left({x}^2,\ {y}^2\right)\right)-\left(E\left[g\left(x,y\right)\right]\right)^2}$$

To determine the variance and standard deviation of each random variable that forms part of a multivariate distribution, we first determine their marginal distribution functions and compute the variance and the standard deviation, just like in the univariate case.

### Variance of a Marginal Distribution (Discrete Case)

Suppose a joint distribution of the random variables $$X$$ and $$Y$$ is given by $$P_{XY}(X=x,\ Y=y)$$ (typically abbreviated as $$P_{XY}(x,y)$$) for each pair $$(x,y)$$ of random variables, then for all discrete distributions, two vital requirements hold for each pair $$(x,y)$$:

$$0 \le P_{XY}\left(x,y\right)\le 1$$

And,

$$\sum_{all\ x}\sum_{all\ y}{P_{XY}\left(x,y\right)=1\ }$$

Then, the marginal probabilities $$P_X(X=x)$$ and $$P_Y(Y=y)$$ have variances $$Var(X)$$ and $$Var(Y)$$, respectively:

$$Var\left(X\right)=E\left(X^2\right)-\left[E(X)\right]^2$$

Where

$$E\left(X^2\right)=\sum_{x}{x^2P(X=x)}$$

And

$$E\left(X\right)=\sum_{x}{xP(X=x)}$$

And for the random variable $$Y$$:

$$Var\left(Y\right)=E\left(Y^2\right)-\left[E(Y)\right]^2$$

Where

$$E\left(Y^2\right)=\sum_{x}{y^2P(Y=y)}$$

And

$$E\left(Y\right)=\sum_{x}{yP(Y=y)}$$

### Standard Deviation of a Marginal Distribution (Discrete Case)

The standard deviation is the square root of variance. Denoted by $$\sigma_X$$ and $$\sigma_Y$$, respectively, the variance of $$X$$ and $$Y$$ is given by:

$$\sigma_X=\sqrt{E\left(X^2\right)-\left[E(X)\right]^2}$$

And,

$$\sigma_Y=\sqrt{E\left(Y^2\right)-\left[E(Y)\right]^2}$$

#### Example: Variance and Standard Deviation for Joint Random Variables (Discrete case)

Let $$X$$ and $$Y$$ have joint pmf:

$$f\left(x,y\right)=\frac{x+y}{21},\ \ \ x=1,2,3\ \ \ \ \ y=1,2$$

Calculate the variance and the standard deviation of $$X$$.

Solution

We know that:

$$Var\left(X\right)=E\left(X^2\right)-\left[E(X)\right]^2$$

First, we find the marginal probability mass function of $$X$$, which is given by:

\begin{align*} P_X\left(x\right) & =\sum_{all\ x}{P\left(x,y\right)=}P\left(X=x\right),\ \ \ \ x\epsilon S_x \\ & =\frac{x+\left(1\right)}{21}+\frac{x+\left(2\right)}{21}=\frac{2x+3}{21} \end{align*}

Then,

\begin{align*} E\left(X\right) & =\sum_{\left(all\ x\right)}{xP_X\left(x\right)} \\ & =\sum_{x=1}^{3}{xP_X\left(x\right)=\sum_{x=1}^{3}{x\frac{2x+3}{21}}} \\ & =\left(1\right)\frac{2\left(1\right)+3}{21}+\left(2\right)\frac{2\left(2\right)+3}{21}+\left(3\right)\frac{2\left(3\right)+3}{21}\\ &=1\left(\frac{5}{21}\right)+2\left(\frac{7}{21}\right)+3\left(\frac{9}{21}\right) \\ &=\frac{46}{21} \approx 2.1907619 \end{align*}

And

\begin{align*} E\left(X^2\right) & =\sum_{all\ x}{x^2P_X\left(x\right)} \\ & =\left(1\right)^2\left(\frac{5}{21}\right)+\left(2\right)^2\left(\frac{7}{21}\right)+\left(3\right)^2\left(\frac{9}{21}\right)\\ & =\frac{38}{7} \end{align*}

Thus,

\begin{align*} Var\left(X\right) & =E\left(X^2\right)-\left[E(X)\right]^2 \\ & =\frac{38}{7}-\left(\frac{46}{21}\right)^2=\frac{278}{441}\approx0.6304 \end{align*}

We know that the standard deviation of $$X$$ is the standard deviation of its variance. Therefore,

\begin{align*} \sigma_X & =\sqrt{Va\left(X\right)} \\ & =\sqrt{0.6304}=0.7840 \end{align*}

### Variance of a Marginal Distribution (Continuous case)

We denote the pdf of a joint distribution of the random variables $$X$$ and $$Y$$ by $$f_{XY}(x,y)$$. All continuous distributions must meet two main requirements for each ordered pair $$(x,y)$$ in the domain of $$f$$. The properties include:

$$f_{XY}\left(x,y\right)\geq 0$$

And,

$$\int_{x}\int_{y}{f_{XY}\left(x,y\right)=1}$$

Just like in the discrete case, we can calculate the variances by first calculating their marginal distributions, $$f_X(x)$$ and $$f_Y(y)$$. Recall that:

$$f_X\left(x\right)=\int_{y}{f_{XY}\left(x,y\right)dy}$$

And

$$f_Y\left(y\right)=\int_{x}{f_{XY}\left(x,y\right)dx}$$

Moreover, similar to the discrete case:

$$Var\left(X\right)=E\left(X^2\right)-\left[E(X)\right]^2$$

Where:

$$E\left(X^2\right)=\int_{x}{x^2f_X\left(x\right)dx}$$

And

$$E\left(X\right)=\int_{x}{xf_X\left(x\right)dx}$$

Similarly,

$$Var\left(Y\right)=E\left(Y^2\right)-\left[E(Y)\right]^2$$

Where

$$E\left(Y^2\right)=\int_{y}{y^2f_Y\left(y\right)dy}$$

And

$$E\left(Y\right)=\int_{y}{yf_Y\left(y\right)dy}$$

### Standard Deviation of a Marginal Distribution (Continuous case)

We know that the standard deviation is the square root of the variance:

$$\sigma_X=\sqrt{Var\left(X\right)}$$

And,

$$\sigma_Y=\sqrt{Var\left(Y\right)}$$

#### Example: Variance and Standard Deviation for a Marginal Distribution (Continuous case)

Let $$X$$ and $$Y$$ have the joint pdf:

$$f\left(x,y\right)=\left(\frac{4}{3}\right)\left(1-xy\right),\ \ \ \ \ 0\le x\le1,\ \ \ 0\le y\le1$$

Find $$Var(Y)$$ and $$\sigma_Y$$.

Solution

First, let us find the marginal probability density for $$Y$$.

We know that,

\begin{align*} f_Y\left(y\right) & =\int_{x}{f_{XY}\left(x,y\right)dx} \\ & =\frac{4}{3}\int_{0}^{1}{\left(1-xy\right)\ \ dx} \\ & =\left(\frac{4}{3}\right)\left(1-\frac{y}{2}\right),\ \ \ 0\le y\le1\ \\ & =\frac{4}{3}\int_{0}^{1}{\left(1-xy\right)\ \ dx} \\ & =\left(\frac{4}{3}\right)\left(1-\frac{y}{2}\right),\ \ \ 0\le y\le1 \end{align*}

Then,

\begin{align*} E\left(Y\right)& =\int_{y}{yf_Y\left(y\right)dy}=\int_{0}^{1}y\left(\left(\frac{4}{3}\right)\left(1-\frac{y}{2}\right)\right)dy \\ &=\left[\frac{4}{6}y^2-\frac{4y^3}{18}\right]_0^1 \\ &=\frac{4}{6}-\frac{4}{18} \\ & =\frac{4}{9} \end{align*}

Also,

\begin{align*} E\left(Y^2\right) & =\int_{y}{y^2f_Y\left(y\right)dy}\\ &=\int_{0}^{1}{y^2\left(\frac{4}{3}\right)\left(1-\frac{y}{2}\right)\ dy}\\ &=\int_{0}^{1}{y^2\left(\frac{4}{3}\right)\left(1-\frac{y}{2}\right)\ dy}\\ &=\int_{0}^{1}{\frac{4y^2}{3}-\frac{4y^3}{6}dy}\\ &=\left|\frac{4y^3}{9}-\frac{4y^4}{24}\right|_0^1=\left(\frac{4}{9}-\frac{4}{24}\right) \\ & =\frac{5}{18} \end{align*}

Therefore,

\begin{align*} & =\int_{0}^{1}{\frac{4y^2}{3}-\frac{4y^3}{6}dy=\left|\frac{4y^3}{9}-\frac{4y^4}{24}\right|_0^1=\left(\frac{4}{9}-\frac{4}{24}\right)=\frac{5}{18}} \\ Var \left(Y\right) & =E\left(Y^2\right)-\left[E\left(Y\right)\right]^2=\frac{5}{18}-\left(\frac{4}{9}\right)^2=\frac{13}{162} \approx 0.080246913 \\ \end{align*}

And now for finding the standard deviation:

\begin{align*} \sigma_Y & =\sqrt{Var\left(Y\right)} \\ &=\sqrt{\frac{13}{162}}=0.2833=0.283278861 \\ \end{align*}

## Variance and Standard Deviation for Conditional Distributions

### Variance of a Conditional Distribution (Discrete Case)

The conditional variance of $$X$$, given that $$Y=y$$, is defined by:

$$Var(X|Y=y)=E\left(X^2|Y=y\right)-\left[E(X|Y=y)\right]^2$$

Where:

$$E\left(X^2|Y=y\right)=\sum_{x}{x^2.g(x|Y=y)}$$

And

$$E\left(X|Y=y\right)=\sum_{x}{x.g(x|Y=y)}$$

Note that this is analogous to the variance of a single random variable.

Similarly, the conditional variance of $$Y$$ given $$X=x$$ is defined by:

$$Var(Y|X=x)=E\left(Y^2|X=x\right)-\left[E(Y|X=x)\right]^2$$

Where:

$$E\left(Y^2|X=x\right)=\sum_{y}{y^2.h(y|X=x)}$$

And

$$E(Y|X=x)=\sum_{x}{y.h(y|X=x)}$$

#### Example: Conditional Variance (Discrete Case)

Let $$X$$ and $$Y$$ have a joint pmf:

$$f\left(x,y\right)=\frac{x+y}{21},\ \ \ x=1,2,3\ \ \ \ \ y=1,2$$

Find $$Var\left(X\middle| Y=1\right)$$.

Solution

First, we have to find the marginal distribution $$f_Y(y)$$ where we know that:

\begin{align*} P_Y\left(y\right) & =\sum_{all\ y}{P\left(x,y\right)=P\left(Y=y\right),\ \ \ \ y\epsilon S_y} \\ {\Rightarrow P}_Y\left(y\right) & =\frac{\left(1\right)+y}{21}+\frac{\left(2\right)+y}{21}+\frac{\left(3\right)+y}{21}=\frac{6+3y}{21} \end{align*}

Secondly, the conditional distribution of $$X$$ given that $$Y=y$$, $$g\left(x\middle| y\right)$$, is equal to:

$$g\left(x\middle| y\right)=\frac{f\left(x,y\right)}{f_Y\left(y\right)}=\frac{\frac{x+y}{21}}{\frac{6+3y}{21}}=\frac{x+y}{3y+6}$$

We know that,

$$Var\left(X\middle| Y=y\right)=\sigma_{X|Y=y}^2\ \ =E\left(X^2|Y=y\right)-\left[E(X|Y=y)\right]^2$$

We need:

$$Var(X|Y=1)=E\left(X^2|Y=1\right)-\left[E(X|Y=1)\right]^2$$

We need to find $$E\left(X\middle| Y=1\right)$$.

\begin{align*} E\left(X\middle| Y=1\right) & =\sum_{x=1}^{3}{x.g\left(x\middle| y=1\right)} \\ & =\sum_{x=1}^{3}{x\frac{\left(x+\left(1\right)\right)}{3\left(1\right)+6}} \\ & =\left(1\right)\frac{\left(1+\left(1\right)\right)}{3\left(1\right)+6}+2\frac{\left(2+\left(1\right)\right)}{3\left(1\right)+6}+3\frac{\left(3+\left(1\right)\right)}{3\left(1\right)+6} \\ &=1\left(\frac{2}{9}\right)+2\left(\frac{1}{3}\right)+3\left(\frac{4}{9}\right) \\ & =\frac{20}{9} \end{align*}

Also, we need,

\begin{align*} E\left(X^2|Y=y\right) & =\sum_{x=1}^{3}{x.g\left(x\middle| y=1\right)} \\ & =\sum_{x=1}^{3}{x^2\frac{\left(x+\left(1\right)\right)}{3\left(1\right)+6}} \\ & =\left(1^2\right)\frac{\left(1+\left(1\right)\right)}{3\left(1\right)+6}+2^2\frac{\left(2+\left(1\right)\right)}{3\left(1\right)+6}+3^2\frac{\left(3+\left(1\right)\right)}{3\left(1\right)+6} \\ & =1\left(\frac{2}{9}\right)+4\left(\frac{1}{3}\right)+9\left(\frac{4}{9}\right) \\ & =\frac{50}{9} \\ \Rightarrow Var\left(X\middle| Y=1\right) & =E\left(X^2|Y=1\right)-\left[E\left(X\middle| Y=1\right)\right]^2 \\ & =\frac{50}{9}-\left(\frac{20}{9}\right)^2=\frac{50}{81} \end{align*}

### Standard Deviation of a Conditional Distribution (Discrete Case)

The conditional standard deviation of $$X$$ given that $$Y=y$$ is defined by:

$$\sigma_{X|Y=y}=\sqrt{Var\left(X\middle| Y=y\right)}$$

While, the conditional standard deviation variance of $$Y$$ given $$X=x$$ is defined by:

$$\sigma_{Y|X=x}=\sqrt{Var\left(Y\middle| X=x\right)}$$

### Variance of a Conditional Distribution (Continuous Case)

The conditional variance of $$X$$ given $$Y=y$$ is:

$$Var\left(X\middle| Y=y\right)=E\left(X^2\middle| Y=y\right)-\left[E\left(X\middle| Y=y\right)\right]^2$$

Where:

$$E\left(X^2\middle| Y=y\right)=\int_{x}{x^2g(x|Y=y)}$$

And

$$E\left(X\middle| Y=y\right)=\int_{x}{x.g(x|Y=y)}$$

Using the same logic,

$$Var\left(Y\middle| X=x\right)=E\left[Y^2\middle| X\right]-\left[E\left(Y\middle| X\right)\right]^2$$

Where:

$$E\left(Y^2\middle| X=x\right)=\int_{y}{y^2h(y|X=x)dy}$$

And

$$E\left(Y\middle| X=x\right)=\int_{y}{y.h(y|X=x)dy}$$

### Standard Deviation of a Conditional Distribution (Continuous Case)

$$\sigma_{X|Y}=\sqrt{Var\left(Y\middle| X=x\right)}$$

And,

$$\sigma_{Y|X}=\sqrt{Var\left(X\middle| Y=y\right)}$$

#### Example: Conditional Variance (Continuous case)

Let the joint pdf of random variables $$X$$ and $$Y$$ be given by:

$$f\left(x,y\right)=\left(\frac{4}{3}\right)\left(1-xy\right),\ \ \ \ \ 0\le x\le1,\ \ \ 0\le y\le1$$

Calculate $$Var\left(X\middle| Y=1\right)$$.

Solution

First, let us find the marginal probability density for $$Y$$.

We know that,

\begin{align*} f_Y\left(y\right) & =\int_{x}{f_{XY}\left(x,y\right)dx} \\ & =\frac{4}{3}\int_{0}^{1}{\left(1-xy\right)\ \ dx} \\ & =\left(\frac{4}{3}\right)\left(1-\frac{y}{2}\right),\ \ \ 0\le y\le1\ \end{align*}

We also need we need the conditional distribution $$g(X|Y=y)$$ given by:

$$g\left(X\middle| Y=y\right)=\frac{f_{XY}(x,y)}{f_Y\left(y\right)}=\frac{\left(\frac{4}{3}\right)\left(1-xy\right)}{\left(\frac{4}{3}\right)\left(1-\frac{y}{2}\right)}=\frac{1-xy}{1-\frac{y}{2}}$$

We know that:

$$Var\left(X\middle| Y=y\right)=E\left(X^2\middle| Y=y\right)-\left[E\left(X\middle| Y=y\right)\right]^2$$

But we need:

$$Var\left(X\middle| Y=1\right)=E\left(X^2\middle| Y=1\right)-\left[E\left(X\middle| Y=1\right)\right]^2$$

\begin{align*} E\left(X^2\middle| Y=1\right) & =\int_{x}{x^2.g\left(x\middle| Y=1\right)}dx \\ &=\int_{0}^{1}{x^2.\frac{1-(1)x}{1-\frac{1}{2}}=\int_{0}^{1}{2x^2(1-x)dx=\frac{1}{6}\ }} \end{align*}

Also, we need:

\begin{align*} E\left(X\middle| Y=1\right) & =\int_{x}{x.g\left(x\middle| Y=1\right)}dx \\ &=\int_{0}^{1}{x.\frac{1-(1)x}{1-\frac{1}{2}}=\int_{0}^{1}{2x(1-x)dx=\frac{1}{3}\ }} \\ \Rightarrow Var\left(X\middle| Y=1\right) & =E\left(X^2\middle| Y=1\right)-\left[E\left(X\middle| Y=1\right)\right]^2 \\ &=\frac{1}{6}-\left(\frac{1}{3}\right)^2=\frac{1}{18} \end{align*}

Learning Outcome

Topic 3.e: Multivariate Random Variables – Calculate Variance, the standard deviation for conditional and marginal probability distributions.

Shop CFA® Exam Prep

Offered by AnalystPrep

Featured Shop FRM® Exam Prep Learn with Us

Subscribe to our newsletter and keep up with the latest and greatest tips for success
Shop Actuarial Exams Prep Shop GMAT® Exam Prep

Daniel Glyn
2021-03-24
I have finished my FRM1 thanks to AnalystPrep. And now using AnalystPrep for my FRM2 preparation. Professor Forjan is brilliant. He gives such good explanations and analogies. And more than anything makes learning fun. A big thank you to Analystprep and Professor Forjan. 5 stars all the way!
michael walshe
2021-03-18
Professor James' videos are excellent for understanding the underlying theories behind financial engineering / financial analysis. The AnalystPrep videos were better than any of the others that I searched through on YouTube for providing a clear explanation of some concepts, such as Portfolio theory, CAPM, and Arbitrage Pricing theory. Watching these cleared up many of the unclarities I had in my head. Highly recommended.
Nyka Smith
2021-02-18
Every concept is very well explained by Nilay Arun. kudos to you man!
2021-02-13
Agustin Olcese
2021-01-27
Excellent explantions, very clear!
Jaak Jay
2021-01-14
Awesome content, kudos to Prof.James Frojan
sindhushree reddy
2021-01-07
Crisp and short ppt of Frm chapters and great explanation with examples.