One-tailed vs. Two-tailed Hypothesis T ...
A one-tailed test (one-sided test) is a statistical test that considers a change... Read More
The sum of squares of a regression model is usually represented in the Analysis of Variance (ANOVA) table. The ANOVA table contains the sum of squares (SST, SSE, and SSR), the degrees of freedom, the mean squares (MSR and MSE), and F-statistics.
The typical format of ANOVA is as shown below:
$$ \begin{array}{c|c|c|c|c}
\textbf{Source} & \textbf{Sum of Squares} & \textbf{Degrees} & \textbf{Mean} & \textbf{F-statistic} \\
& & \textbf{of} & \textbf{square} & \\
& & \textbf{Freedom} & & \\ \hline
{ \text{Regression} \\ \text{(Explained)} } & SSR=\sum_{i=1}^{n}\left(\widehat{Y_i}-\bar{Y}\right)^2 &
1 & MSR=\frac{SSR}{1} & F=\frac{MSR}{MSE} \\ \hline
{ \text{Residual} \\ \text{(explained)} } & SSE=\sum_{i=1}^{n}\left(Y_i-\widehat{Y_i}\right)^2 & n-2 & MSE=\frac{SSE}{n-2} & \\ \hline
\text{Total} & SST=\sum_{i=1}^{n}\left(Y_i-\bar{Y}\right)^2 & n-1 & &
\end{array} $$
Standard Error of EstimateStandard Error of Estimate, \(S_e\) or \(SEE\), is referred to as the root mean square error or standard error of the regression. It measures the distance between the observed and dependent variables predicted by the regression model. The Standard Error of Estimate is easily calculated from the ANOVA table using the following formula:
$${\text{Standard Error of Estimate }}(S_e)=\sqrt{MSE}=\sqrt{\frac{\sum_{i = 1}^{n}\left(Y_i-\hat{Y}\right)^2}{n-2}}$$
The standard error of estimate, coefficient of determination, and F-statistic are the measures that can be used to gauge the goodness of fit of a regression model. In other words, these measures are used to tell the extent to which a regression model syncs with data.
The smaller the Standard Error of Estimate is, the better the fit of the regression line. However, the Standard Error of Estimate does not tell us how well the independent variable explains the variation in the dependent variable.
Example: Calculating and Interpreting F-Statistic
The completed ANOVA table for the regression model of the inflation rate against the unemployment rate over 10 years is given below:
$$ \begin{array}{c|c|c|c|c}
\textbf{Source} & \textbf{Sum of} & \textbf{Degrees of} & \textbf{Mean Sum} & \textbf{F-Statistic} \\
& \textbf{Squares} & \textbf{Freedom} & \textbf{of Squares} & \\ \hline
\text{Regression} & 10.568 & 1 & 10.568 & ? \\ \hline
\text{Error} & 3.136 & 8 & 0.392 \\ \hline
\text{Total} & 13.704 & 9
\end{array} $$
Solution
Question
Consider the following analysis of variance (ANOVA) table:
$$
\begin{array}{c|c|c|c}
\textbf {Source} & \textbf {Degrees of} & \textbf { Sum of } & \textbf {Mean Sum} \\
& \textbf{Freedom} & \textbf {Squares} & \textbf{of Squares} \\ \hline
\text {Regression} & 1 & 1,701,563 & 1,701,563 \\ \hline
\text {Error} & 3 & 106,800 & 13,350 \\
\text {(Unexplained)} & & & \\ \hline
\text {Total} & 4 & 1,808,363 & \\
\end{array}
$$The value of \(R^2\) and the F-statistic for the test of fit of the regression model are closest to:
- 6% and 16.
- 94% and 127.
- 99% and 127.
Solution
The correct answer is B.
$$R^2=\frac{\text{Sum of Squares Regression (SSR)}}{\text{Sum of Squares Total (SST)}}=\frac{1,701,563}{1,808,363}=0.94=94\%$$
$$ \begin{align*} F & =\frac{\text{Mean Regression Sum of Squares (MSR)}}{\text{Mean Squared Error (MSE)}} \\ & =\frac{1,701,563}{13,350} =127.46\approx 127 \end{align*}$$